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Abstract

In this lecture, we provide an overview of some recent algorithms for radar waveform design. We

first illustrate the concept of matched illumination for optimized target detection and identification.

This theory derives the optimized transmission signal and the corresponding receiver response which

maximizes the Signal to Noise Ratio (SNR).

The second part of the lecture is focused on waveform optimization in the presence of colored

disturbance with known covariance matrix. Focusing on the class of coded pulse trains, we present a

code selection algorithm which maximizes the detection performance but, at the same time, is capable

of controlling both the region of achievable values for the Doppler estimation accuracy and the degree

of similarity with a pre-fixed radar code.

Finally, the last part of the talk is devoted to the challenging issue of Multiple-Input Multiple-Output

(MIMO) radar waveform design. In this context, we discuss the benefits of waveform diversity enabling

the MIMO radar superiority over its phased array counterpart.

Keywords. Coded Waveform Design, Matched Illumination, MIMO Radar.

I. INTRODUCTION

The huge advances in high speed signal processing hardware, digital array radar technology,

and the requirement of better and better radar performances has promoted, during the last two

decades, the development of very sophisticated algorithms for radar waveform design [1].
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The synthesis of narrowband waveforms with a specified ambiguity function is considered

in [2]. In [3], the theory of wavelets is exploited for the design of radar signals capable of

operating in a dense target environment. The use of information theory to devise waveforms

for the detection of extended radar targets, exhibiting resonance phenomena, is studied in [4].

Therein, two design problems with constraints on signal energy and duration are solved.

The concept of matched-illumination for optimized target detection and identification has also

received a considerable attention [6], [8], [9, and references therein] due to the advent of adaptive

radar transmitters which permit the use of advanced pulse shaping techniques. This theory derives

the optimized transmission waveform and the corresponding receiver response which maximizes

the SNR. The case of single polarimetric channel is considered in [8], whereas the most general

situation of full polarization radar transmission is handled in [9]. The concept is also further

investigated in [10], with reference to Gaussian point-target and stationary Gaussian distributed

clutter. The results show that the optimum procedure places the signal energy in the noise band

having minimum power.

Waveform optimization in the presence of colored disturbance with known covariance matrix

has been addressed in [11]. Three techniques based on the maximization of the SNR are

introduced and analyzed. Two of them also exploit the degrees of freedom provided by a

rank deficient disturbance covariance matrix. In [12], a signal design algorithm relying on the

maximization of the SNR under a similarity constraint with a given waveform is proposed

and assessed. The solution potentially emphasizes the target contribution and de-emphasizes the

disturbance. Moreover, it also preserves some characteristics of the desired waveform. In [13], a

signal subspace framework, which allows the derivation of the optimal radar waveform (in the

sense of maximizing the SNR at the output of the detector) for a given scenario, is presented

under the Gaussian assumption for the statistics of both the target and the clutter.

A quite different signal design approach relies on the modulation of a pulse train parameters

(amplitude, phase, and frequency) in order to synthesize waveforms with some specified prop-

erties. This technique is known as the radar coding and a substantial bulk of work is nowadays

available in open literature about this topic. Here we mention Barker, Frank, and Costas codes

which lead to waveforms whose ambiguity functions share good resolution properties both in

range and Doppler. This list is not exhaustive and a comprehensive treatment can be found in

[14], [15], [16]. It is, however, worth pointing out that the ambiguity function is not the only
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relevant objective function for code design in operating situations where the disturbance is not

white. This might be the case of optimum radar detection in the presence of colored disturbance,

where the standard matched filter is no longer optimum and the most powerful radar receiver

requires whitening operations.

In [17], [18] the problem of code optimization in the presence of colored Gaussian disturbance

is tackled. At the design stage, the authors focus on the class of coded pulse trains and propose a

code selection algorithm which is optimum according to the following criterion: maximization of

the detection performance under a control both on the region of achievable values for the Doppler

estimation accuracy and on the degree of similarity with a specified radar code. Actually, this

last constraint is equivalent to force a similarity between the ambiguity functions of the devised

waveform and of the pulse train encoded with the pre-fixed sequence.

Additional degrees of freedom in waveform design, which permit a further optimization of the

system performance, can be obtained exploiting a MIMO radar consisting of multiple sensors

at both the transmitter and the receiver end [19]. In this last case, a Space-Time Coding (STC)

strategy can be implemented, namely it is possible to code the transmitted signal both in time

(i.e. from pulse to pulse) and in space (from a transmitting antenna to another).

The lecture is organized as follows. In Section II, we deal with the concept of matched

illumination for enhanced target detection and identification. In Section III, which is the core of

the lecture, we discuss the problem of code design in colored Gaussian disturbance and present

the code design algorithm derived in [17] as well as some extensions. In Section IV, we address

waveform design for MIMO radar with both colocated and widely spaced sensors. Finally, in

Section V, we draw conclusions and outline possible future research tracks.

II. MATCHED ILLUMINATION FOR TARGET DETECTION AND IDENTIFICATION

A challenging design problem encountered in radar, sonar, and communication systems in

general, is that of jointly optimizing the transmitter and receiver; given, perhaps, some knowledge

of the channel [8]. In the active sensor detection problem (radar, sonar, lidar), one is concerned

with judiciously selecting the operating band, transmit waveform modulations, and receiver

processing strategy, in order to maximize the probability of detecting the presence of a ”target”,

while maintaining a prescribed rate of false alarm [20], [5], [6], and [7].

In the case of radar, a first generation of so-called ”matched illumination-reception” systems

New Trends in Coded Waveform Design for Radar Applications 

RTO-EN-SET-119(2010) 6 - 3 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



Figure 1: Matched illumination-reception scheme.

(see Figure 1) has been designed relaxing the ”point target” assumption, usually met in several

current surveillance radars. Specifically, the optimal waveform is obtained as an eigenfunction

of a Fredholm integral operator of the first kind whose kernel is formed by the impulse response

of the target. With reference to the case of Additive White Gaussian Noise (AWGN), it is well

known that this solution maximizes the output SNR of an appropriately matched filter [21].

In [8], a general matched illumination theory for optimized target detection with reference to

a single polarimetric channel has been developed. The authors derive the optimized transmission

waveform and the corresponding receiver response which maximize the SNR in the presence of

generic colored noise and signal-dependent clutter. Interestingly, optimized single-polarization

waveform focuses most of its energy into one or a few narrow frequency bands [22].

The extension to the multiple channel case, which is of particular relevance for full-polarization

waveforms (containing both the horizontal and vertical polarizations) is addressed in [23]. It relies

on a multiple channel factorization of the noise and clutter power spectral density, in order to

determine the optimized transmission waveform and the receiver response. The approach has

been modified in [9], through a discrete matrix formulation, which avoids the computation of

a multiple channel spectral factorization. Therein, the improvements for target detection and

identification are also studied with reference to realistic simulated radar response data of tactical

ground moving targets.
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It is worth pointing out that the aforementioned approaches provide a bound on the maximum

potential performance improvement in SNR, resulting from the use of matched illumination over

standard chirp waveforms. Clearly, the practical application of these concepts in a real system

requires an optimization involving multiple constraints. For instance, it is desirable that the

range-sidelobes of the resulting waveform be low, in order to reduce possible range ambiguities.

III. CODE DESIGN IN THE PRESENCE OF COLORED DISTURBANCE

In this section1, we consider the problem of radar code design in the presence of colored

Gaussian noise. To this end, we consider a radar system which transmits a coherent burst of

pulses

s(t) = atu(t) exp[j(2πf0t+ φ)] ,

where at is the transmit signal amplitude, j =
√−1,

u(t) =
N−1∑
i=0

a(i)p(t− iTR) ,

is the signal’s complex envelope, p(t) is the signature of the transmitted pulse, TR is the Pulse

Repetition Time (PRT), [a(0), a(1), . . . , a(N−1)] ∈ CN is the radar code (assumed without loss

of generality with unit norm), f0 is the carrier frequency, and φ is a random phase. Moreover,

the pulse waveform p(t) is of duration Tp ≤ TR and has unit energy, i.e.∫ Tp

0

|p(t)|2dt = 1 ,

where | · | denotes the modulus of a complex number. The signal backscattered by a target with

a two-way time delay τ and received by the radar is

r(t) = αre
j2π(f0+fd)(t−τ)u(t− τ) + n(t) ,

where αr is the complex echo amplitude (accounting for the transmit amplitude, phase, target

reflectivity, and channels propagation effects), fd is the target Doppler frequency, and n(t) is

additive disturbance due to clutter and thermal noise.

1The material in this section of the lecture is taken from [17], [18].
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This signal is down-converted to baseband and filtered through a linear system with impulse

response h(t) = p∗(−t), where (·)∗ denotes complex conjugate. Let the filter output be

v(t) = αre
−j2πf0τ

N−1∑
i=0

a(i)ej2πifdTRχp(t− iTR − τ, fd) + w(t) ,

where χp(λ, f) is defined as

χp(λ, f) =

∫ +∞

−∞
p(β)p∗(β − λ)ej2πfβdβ,

and w(t) is the down-converted and filtered disturbance component. The signal v(t) is sampled

at tk = τ + kTR, k = 0, . . . , N − 1, providing the observables2

v(tk) = αa(k)ej2πkfdTRχp(0, fd) + w(tk), k = 0, . . . , N − 1 ,

where α = αre
−j2πf0τ . Assuming that the pulse waveform time-bandwidth product and the ex-

pected range of target Doppler frequencies are such that the single pulse waveform is insensitive

to target Doppler shift3, namely χp(0, fd) ∼ χp(0, 0) = 1, we can rewrite the samples v(tk) as

v(tk) = αa(k)ej2πkfdTR + w(tk), k = 0, . . . , N − 1 .

Moreover, denoting by c = [a(0), a(1), . . . , a(N − 1)]T the N-dimensional column vector

containing the code elements4, p = [1, ej2πfdTR , . . . , ej2π(N−1)fdTR ]T the temporal steering vector,

v = [v(t0), v(t1), . . . , v(tN−1)]
T , and w = [w(t0), w(t1), . . . , w(tN−1)]

T , we get the following

vectorial model for the backscattered signal

v = αc� p+w , (1)

where � denotes the Hadamard element-wise product [24].

A. Relevant Performance Measures for Code Design

In this sub-section, we introduce some key performance measures to be optimized or controlled

during the selection of the radar code. As it will be shown, they permit to formulate the design

of the code as a constrained optimization problem.

2We neglect range straddling losses and also assume that there are no target range ambiguities.

3Notice that this assumption might be restrictive for the cases of very fast moving targets such as fighters and ballistic missiles.

4(·)T is the transpose operator.
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Detection Probability. This is one of the most important performance measures which radar

engineers attempt to optimize. We just remind that the problem of detecting a target in the

presence of observables described by the model (1) can be formulated in terms of the following

binary hypotheses test ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H0 : v = w

H1 : v = αc� p+w

(2)

Assuming that the disturbance vector w is a zero-mean complex circular Gaussian vector with

known positive definite covariance matrix

E[ww†] = M ,

(E[·] denotes statistical expectation and (·)† conjugate transpose), the Generalized Likelihood

Ratio Test (GLRT) detector for (2), which coincides with the optimum test (according to the

Neyman-Pearson criterion) if the phase of α is uniformly distributed in [0, 2π[ [25], is given by

|v†M−1(c� p)|2
H1
>
<
H0

G , (3)

where G is the detection threshold set according to a desired value of the false alarm Probability

(Pfa). An analytical expression of the detection Probability (Pd), for a given value of Pfa, is

available both for the cases of non-fluctuating and fluctuating target. In the former case (NFT),

Pd = Q

(√
2|α|2(c� p)†M−1(c� p),

√−2 lnPfa

)
, (4)

while, for the case of Rayleigh fluctuating target (RFT) with E[|α|2] = σ2
a ,

Pd = exp

(
lnPfa

1 + σ2
a(c� p)†M−1(c� p)

)
, (5)

where Q(·, ·) denotes the Marcum Q function of order 1. These last expressions show that, given

Pfa, Pd depends on the radar code, the disturbance covariance matrix and the temporal steering

vector only through the SNR, defined as

SNR =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|α|2(c� p)†M−1(c� p) NFT

σ2
a(c� p)†M−1(c� p) RFT

(6)
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Moreover, Pd is an increasing function of SNR and, as a consequence, the maximization of Pd

can be obtained maximizing the SNR over the radar code.

Doppler Frequency Estimation Accuracy. The Doppler accuracy is bounded below by

Cramer-Rao Bound (CRB) and CRB-like techniques which provide lower bounds for the vari-

ances of unbiased estimates. Constraining the CRB is tantamount to controlling the region of

achievable Doppler estimation accuracies, referred to in the following as A. We just highlight

that a reliable measurement of the Doppler frequency is very important in radar signal processing

because it is directly related to the target radial velocity useful to speed the track initiation, to

improve the track accuracy [26], and to classify the threat target level in defense applications.

In this subsection, we introduce the CRB for the case of known α, the Modified CRB (MCRB)

[27] and the Miller-Chang Bound (MCB) [28] for random α, and the Hybrid CRB (HCRB) [29,

pp. 931-932] for the case of a random zero-mean α.

Proposition I. The CRB for known α (Case 1), the MCRB and the MCB for random α (Case

2 and Case 3 respectively), and the HCRB for a random zero-mean α (Case 4) are given by

[17]

∆CR(fd) =
Ψ

2
∂h†

∂fd
M−1 ∂h

∂fd

, (7)

where h = c� p,

Ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

|α|2 Case 1

1

E[|α|2] Cases 2 and 4

E

[
1

|α|2
]

Case 3

(8)

Notice that
∂h

∂fd
= TR c� p� u ,

with u = [0, j2π, . . . , j2π(N − 1)]T , and (7) can be rewritten as

∆CR(fd) =
Ψ

2T 2
R(c� p� u)†M−1(c� p� u)

. (9)
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As already stated, forcing an upper bound to CRB, for a specified Ψ value, results in a lower

bound on the size of A. Hence, according to this guideline, we focus on the class of radar codes

complying with the condition

∆CR(fd) ≤ Ψ

2T 2
Rδa

, (10)

which can be equivalently written as

(c� p� u)†M−1(c� p� u) ≥ δa , (11)

where the parameter δa rules the lower bound on the size of A. Otherwise stated, suitably

increasing δa, we ensure that new points fall in the region A, namely new smaller values for the

estimation variance can be theoretically reached by estimators of the target Doppler frequency.

Similarity Constraint. Designing a code which optimizes the detection performance does

not provide any kind of control to the shape of the resulting coded waveform. Precisely, the

unconstrained optimization of Pd can lead to signals with significant modulus variations, poor

range resolution, high peak sidelobe levels, and more in general with an undesired ambiguity

function behavior. These drawbacks can be partially circumvented imposing a further constraint

on the sought radar code. Precisely, it is required the solution to be similar to a known code

c0 (‖c0‖2 = 1)5, which shares constant modulus, reasonable range resolution and peak sidelobe

level. This is tantamount to imposing that [12]

‖c− c0‖2 ≤ ε , (12)

where the parameter ε ≥ 0 rules the size of the similarity region. In other words, (12) permits

to indirectly control the ambiguity function of the considered coded pulse train: the smaller ε

the higher the degree of similarity between the ambiguity functions of the designed radar code

and of c0.

B. Code Design Algorithm.

In this sub-section, we present a technique (proposed in [17] and [18]) for the selection of

the radar code which attempts to maximize the detection performance but, at the same time,

5‖ · ‖ denotes the Euclidean norm of a complex vector.
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provides a control both on the target Doppler estimation accuracy and on the similarity with a

given radar code. To this end, we first observe that

(c� p)†M−1(c� p) = c†
)
M−1 � (pp†)∗

]
c = c†Rc (13)

and

(c� p� u)†M−1(c� p� u) = c†
)
M−1 � (pp†)∗ � (uu†)∗

]
c = c†R1c , (14)

where R = M−1 � (pp†)∗ and R1 = M−1 � (pp†)∗ � (uu†)∗ are positive semidefinite [29, p.

1352, A.77]. It follows that Pd and ∆CR(fd) are competing with respect to the radar code. In

fact, their values are ruled by two different quadratic forms, (13) and (14) respectively, with two

different matrices R and R1. Hence, only when they share the same eigenvector corresponding

to the maximum eigenvalue, (13) and (14) are maximized by the same code. In other words,

maximizing Pd results in a penalization of ∆CR(fd) and vice versa.

Exploiting (13) and (14), the code design problem can be formulated as a non-convex opti-

mization Quadratic Problem (QP) ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxc c†Rc

s.t. c†c = 1

c†R1c ≥ δa

‖c− c0‖2 ≤ ε

The feasibility of the problem, which not only depends on the parameters δa and ε but also on

the pre-fixed code c0, is discussed in [17]. Therein, a technique to solve (QP) has also been

proposed. It ensures a polynomial computational complexity and is based on the relaxation of the

original problem into a Semidefinite Program (SDP). Specifically, the best code is determined

through a rank-one [31] decomposition of an optimal solution of the relaxed problem.

C. Performance Analysis

The present sub-section shows the performance of the considered encoding scheme. To this

end, we assume that the disturbance covariance matrix is exponentially shaped with one-lag

correlation coefficient ρ = 0.8, i.e.

M(i, j) = ρ|i−j| ,
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and set Pfa of the receiver (3) to 10−6. The analysis is conducted in terms of Pd, region of

achievable Doppler estimation accuracies, and ambiguity function of the coded pulse train which

results exploiting the proposed algorithm, i.e.

|χ(λ, f)| =
∣∣∣∣
∫ ∞

−∞
u(β)u∗(β − λ)ej2πfβdβ

∣∣∣∣ =
∣∣∣∣∣
N−1∑
l=0

N−1∑
m=0

ā(l)ā∗(m)χp[λ− (l −m)TR, f ]

∣∣∣∣∣ ,
where [ā(0), . . . , ā(N − 1)] is an optimum code. As to the temporal steering vector p, we

set the normalized Doppler frequency6 f
d
Tr = 0. The convex optimization MATLAB toolbox

SElf-DUal-MInimization (SeDuMi) [32] is exploited for solving the SDP relaxation. The rank-

one decomposition of the SeDuMi solution is performed using the technique described in [31].

Finally, the MATLAB toolbox of [33] is used to plot the ambiguity functions of the coded

pulse trains. In the following, we choose as similarity sequence a generalized Barker code [14,

pp. 109-113] which is a polyphase sequence whose autocorrelation function has minimal peak-

to-sidelobe ratio excluding the outermost sidelobe. Examples of such sequences were found

for all N ≤ 45 [34], [35] using numerical optimization techniques. In the simulations of this

subsection, we assume N = 7 and set the similarity code equal to the generalized Barker

sequence c0 = [0.3780, 0.3780,−0.1072−0.3624j,−0.0202−0.3774j, 0.2752+0.2591j, 0.1855−
0.3293j, 0.0057 + 0.3779j]T .

In Figure 2a, we plot Pd of the optimum code (according to the proposed criterion) versus |α|2
for several values of δa, δε =

(
1− ε

2

)2
= 0.01, and for non-fluctuating target. In the same figure,

we also represent both the Pd of the similarity code as well as the benchmark performance,

namely the maximum achievable detection rate (over the radar code), given by

Pd = Q
(√

2|α|2λmax (R),
√−2 lnPfa

)
, (15)

where λmax (·) denotes the maximum eigenvalue of the argument.

The curves show that increasing δa we get lower and lower values of Pd for a given |α|2
value. This was expected since the higher δa the smaller the feasibility region of the optimization

problem to be solved for finding the code. Nevertheless, the proposed encoding algorithm usually

ensures a better detection performance than the original generalized Barker code.

6We have also considered other values for the target normalized Doppler frequency. The results, not reported here, confirm

the performance behavior showed in the next two subsections.
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Figure 2a: Pd versus |α|2 for Pfa = 10−6, N = 7, δε = 0.01, non-fluctuating target, and several values of

δa ∈ {10−6, 6165.5, 6792.6, 7293.9}. Generalized Barker code (dashed curve). Code which maximizes the SNR

for a given δa (solid curve). Benchmark code (dotted-marked curve). Notice that the curve for δ a = 10−6 perfectly

overlaps with the benchmark Pd.
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Figure 2b: CRBn versus |α|2 for N = 7, δε = 0.01 and several values of δa ∈ {10−6, 6165.5, 6792.6, 7293.9}.

Generalized Barker code (dashed curve). Code which maximizes the SNR for a given δ a (solid curve). Benchmark

code (dotted-marked curve). Notice that the curve for δ a = 7293.9 perfectly overlaps with the benchmark CRBn.
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Figure 2c: Pd versus |α|2 for Pfa = 10−6, N = 7, δa = 10−6, non-fluctuating target, and several values of

δε ∈ {0.01, 0.6239, 0.8997, 0.9994}. Generalized Barker code (dashed curve). Code which maximizes the SNR for

a given δε (solid curve). Benchmark code (dotted-marked curve). Notice that the curve for δ ε = 0.01 perfectly

overlaps with the benchmark Pd.

In Figure 2b, the normalized CRB (CRBn = T 2
RCRB) is plotted versus |α|2 for the same

values of δa as in Figure 2a. The best value of CRBn is plotted too, i.e.

CRBn =
1

2|α|2λmax (R1)
. (16)

The curves highlight that increasing δa better and better CRB values can be achieved. This is

in accordance with the considered criterion, because the higher δa the larger the size of the

region A. Summarizing, the joint analysis of Figures 2a-2b shows that a tradeoff can be realized

between the detection performance and the estimation accuracy. Moreover, there exist codes

capable of outperforming the generalized Barker code both in terms of Pd and size of A.

The effects of the similarity constraint are analyzed in Figure 2c. Therein, we set δa = 10−6

and consider several values of δε. The plots show that increasing δε worse and worse Pd values

are obtained; this behavior can be explained observing that the smaller δε the larger the size of

the similarity region. However, this detection loss is compensated for an improvement of the

coded pulse train ambiguity function. This is shown in Figures 3b-3e, where such function is

plotted assuming rectangular pulses, TR = 5Tp and the same values of δa and δε as in Figure 1c.
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Figure 3a: Ambiguity function modulus of the generalized Barker code c 0 = [0.3780, 0.3780,−0.1072 −
0.3624j,−0.0202− 0.3774j, 0.2752+ 0.2591j, 0.1855− 0.3293j, 0.0057+ 0.3779j]T .

Moreover, for comparison purposes, the ambiguity function of c0 is plotted too (Figure 3a). The

plots highlight that the closer δε to 1 the higher the degree of similarity between the ambiguity

functions of the devised and the pre-fixed codes. This is due to the fact that increasing δε is

tantamount to reducing the size of the similarity region. In other words, we force the devised

code to be similar and similar to the pre-fixed one and, as a consequence, we get similar and

similar ambiguity functions.
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Figures 3b-3e: Ambiguity Function modulus of code which maximizes the SNR for N = 7, δ a = 10−6, c0

generalized Barker code, and several values of δ ε: (b) δε = 0.9994, (c) δε = 0.8997, (d) δε = 0.6239, (e) δε = 0.01.
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Figure 4a: MIMO with colocated antennas.

IV. MIMO RADAR WAVEFORM DESIGN

A MIMO radar is a system which exploits multiple antennas at both the transmitter and the

receiver end. The sensors can be either colocated or widely spaced. The former case is usually

denoted as MIMO radar with colocated antennas (Figure 4a). The latter is referred to as statistical

MIMO radar (see Figure 4). MIMO radar with colocated antennas has been thoroughly studied

in [19, ch. 1]. Therein, the authors focus on the merits of the waveform diversity allowed by

transmit and receive antenna arrays. Their results show that the said waveform diversity enables

the MIMO radar superiority in several fundamental aspects, including: significantly improved

parameter identifiability [36], direct applicability of adaptive arrays for target detection and

parameter estimation, much enhanced flexibility for transmit beampattern design, and waveform

optimality for more accurate target parameter estimation and imaging [37]. Specifically, they

prove that:

1) the maximum number of targets that can be uniquely identified by the MIMO radar is up

to s times that of its phased-array counterpart, where s is the number of transmit antennas

[36];

2) the echoes due to targets at different locations can be linearly independent of each other,

which allows the direct application of many adaptive techniques to achieve high resolution
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Figure 4b: Statistical MIMO radar scheme.

and excellent interference rejection capability;

3) the probing signals [38], transmitted via its antennas, can be optimized to obtain several

transmit beampattern designs with superior performance;

4) the probing signals can also be optimized by considering several design criteria, including

minimizing the trace, determinant, and the largest eigenvalue of the CRB matrix, to improve

the radar parameter estimation and imaging performance.

On a different philosophy are based statistical MIMO radars. They aim at increasing the detector

sensitivity by sufficiently spacing the sensors at both the transmitter and the receiver end, thus

generating a number of independent channels, i.e. spatial diversity. It is indeed well known

that target amplitude fluctuations may have a very detrimental effect in the interest region of

close-to-one detection rates, while being beneficial in the region of low detection probabilities.

In this context, a MIMO radar should be in principle able to provide the receiver with as many

equivalent diversity branches as possible, which, in turn, requires stating the conditions under

which a “rich scattering environment” can be re-created. Major contributions in this direction

have been offered in [39], [40], and [41], wherein the theoretical background for importing the

MIMO concept into radar was laid out, and the interplay between the physical parameters of

the target to be detected, those of the transmitted signal, and the transmit/receive architectures
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have been first investigated. The main results can be summarized as follows:

1) On a non-dispersive channel, and due to the abrupt fluctuations of targets RCS with the

aspect angle, a MIMO radar is able to grant angle diversity, provided that time differences

across the transmit sensors are preserved at the receiver end (waveform-orthogonality-

preserving assumption);

2) The angle diversity yields a diversity order given by the product of the number of transmit

and receive antennas, under additive white Gaussian noise disturbance. In these conditions,

waveform orthogonality allows adopting a very simple path-combination rule;

3) In view of the above results, MIMO structures are superior with respect to their natural

competitors, i.e. phased-array, Multiple-Input Single-Output (MISO), and Single-Input

Multiple-Output (SIMO) radars, as far as detection performance is considered.

The development of a consistent theory for statistical MIMO radar has been the focus of [42],

[43], [44], and [45] where, assuming a general model for the clutter correlation properties, STC

has been recognized as a key ingredient to achieve full diversity, and design criteria for both

the transmitter and the receiver have been given: in the new framework, the usage of orthogonal

waveforms has been shown to be one possible design choice, and only a member of the general

class of space-time coded radar waveforms, that can be employed for performance optimization

purposes under diverse scenarios.

Before concluding this section, we highlight that MIMO radar are receiving a vibrant attention

in the context of Over The Horizon (OTH) radar signal processing. In [46], the authors show

how HF skywave radar performance and flexibility can benefit from transmission of multiple

orthogonal waveforms in MIMO architecture. However, there are several practical limitations to

account for. One issue is that many HF radar transmit arrays are over-sampled spatially to allow

for operation over a significant portion of the HF band. Transmission of orthogonal waveforms, in

this case, can result in large reactive power and consequent equipment damage. Another crucial

issue is the ability to generate orthogonal waveform sets with sufficient cardinality at the low

time-bandwidth products typical of aircraft surveillance operation [46]. Finally a demonstration

of MIMO OTH radar, based on the concept of a-posteriori transmitter beamforming, is presented

in [47]
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V. CONCLUSIONS

In this lecture, we have presented some recent developments in the theory of radar waveform

design. First of all, we have discussed the potential improvements in the output SNR which

can result through the exploitation of the matched illumination concept, both with reference to

the single channel and multiple channel (full-polarization) processing. Then, we have discussed

the problem of radar signal design in the presence of colored Gaussian disturbance. Precisely,

focusing on the class of coded pulse trains, we have presented a code selection algorithm which

maximizes the detection performance but, at the same time, is capable of controlling both the

region of achievable values for the Doppler estimation accuracy and the degree of similarity with

a pre-fixed radar code. Actually, this last constraint is equivalent to force a similarity between the

ambiguity functions of the devised waveform and of the pulse train encoded with the pre-fixed

sequence. The resulting optimization problem belongs to the family of non-convex quadratic

programs. In order to solve it, a relaxation of the original problem into a convex one which

belongs to the SDP class is used.

In the last part of the lecture, we have introduced the challenging MIMO radar concept.

The cases of both colocated and widely spaced sensors are presented. Moreover, the relevant

performance benefits, achievable exploiting a MIMO structure, have been highlighted.

Possible future research tracks, might concern:

• the implementation on the field of matched illumination techniques;

• the design and the analysis of coding techniques, in colored Gaussian disturbance, capable

of being adaptive with respect to the disturbance covariance matrix;

• the study of the interplay between ambiguity function and detection performance in the

context of statistical MIMO radar.

We hope that this lecture stimulates the investigation toward the challenging and fertile research

topic of radar waveform design.
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